Generalizing Swendsen-Wang For Image Analysis Essay

  • Barbu, A., & Zhu, S.-C. (2005). Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. Pattern Analysis and Machine Intelligence, 27, 1239–1253. CrossRefGoogle Scholar

  • Berg, A., Grabler, F., & Malik, J. (2007). Parsing images of architectural scenes. In IEEE 11th international conference on computer vision. Google Scholar

  • Chen, H., Xu, Z., Liu, Z., & Zhu, S.-C. (2006). Composite templates for cloth modeling and sketching. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 943–950). Google Scholar

  • Chi, Z., & Geman, S. (1998). Estimation of probabilistic context-free grammars. Computational Linguistics, 24(2). Google Scholar

  • Felzenszwalb, P., & Huttenlocher, D. (2005). Pictorial structures for object recognition. International Journal of Computer Vision, 61(1), 55–79. CrossRefGoogle Scholar

  • Fischler, M., & Elschlager, R. (1973). The representation and matching of pictorial structures. IEEE Transactions on Computers, 22(1), 67–92. CrossRefGoogle Scholar

  • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55. Google Scholar

  • Fu, K. S. (1981). Syntactic pattern recognition and applications. New York: Prentice Hall. Google Scholar

  • Han, F., & Zhu, S.-C. (2005). Bottom-up and top-down image parsing by attribute graph grammar. In Proceedings of the international conference on computer vision (Vol. 2). Google Scholar

  • Hinz, S., & Baumgartner, A. (2000). Road extraction in urban areas supported by context objects. International Archives of Photogrammetry and Remote Sensing, 33. Google Scholar

  • Jin, Y., & Geman, S. (2006). Context and hierarchy in a probabilistic image model. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 2145–2152). Google Scholar

  • Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S. (1999). Estimators for stochastic unification-based grammars. In Proceedings ACL’99, Maryland. Google Scholar

  • Keselman, Y., & Dickinson, S. (2001). Generic model abstraction from examples. Pattern Analysis and Machine Intelligence, 27, 1141–1156. CrossRefGoogle Scholar

  • Li, F.-F., & Perona, P. (2005). A bayesian hierarchical model for learning natural scene categories. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 524–531). Google Scholar

  • Li, Y., Atmosukarto, I., Kobashi, M., Yuen, J., & Shapiro, L. (2005). Object and event recognition for aerial surveillance. In SPIE—the international society for optical engineering. Google Scholar

  • Maloof, M. A., Langley, P., Binford, T. O., Nevatia, R., & Sage, S. (2003). Improved rooftop detection in aerial images with machine learning. Machine Learning. Google Scholar

  • Matsuyama, T., & Hang, V. (1990). Sigma: A framework for image understanding integration of bottom-up and top-down analyses. New York: Plenum. Google Scholar

  • Moissinac, H., Matre, H., & Bloch, I. (1994). Urban aerial image understanding using symbolic data. In Image and signal processing for remote sensing, proc. SPIE. Google Scholar

  • Nicolas, B., Viglino, J., & Cocquerez, J. (2000). Knowledge based system for the automatic extraction of road intersections from aerial images. International Archives of Photogrammetry and Remote Sensing. Google Scholar

  • Ohta, Y. (1985). Knowledge-based interpretation of outdoor natural color scenes. London: Pitman. Google Scholar

  • Porway, J., & Zhu, S. C. (2009). C4: Stochastic inference on graphical models with positive and negative edges for rapidly exploring competing solutions (Technical Report). Google Scholar

  • Porway, J., Wang, K., Yao, B., & Zhu, S.-C. (2008). A hierarchical and contextual model for aerial image understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition. Google Scholar

  • Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proceedings of the European conference on computer vision (pp. 1–15). Google Scholar

  • Siddiqi, K., Shokoufandeh, A., Dickinson, S., & Zucker, S. W. (1999). Shock graphs and shape matching. International Journal of Computer Vision, 35(1), 13–32. CrossRefGoogle Scholar

  • Singhal, A., Luo, J., & Zhu, W. (2003). Probabilistic spatial context models for scene content understanding. In IEEE computer society conference on computer vision and pattern recognition (Vol. 1). Google Scholar

  • Sivic, J., Russell, B., Efros, A., Zisserman, A., & Freeman, W. (2005). Discovering objects and their location in images. In Tenth IEEE international conference on computer vision. Google Scholar

  • Sudderth, E. B., Torralba, A., Freeman, W. T., & Willsky, A. S. (2005). Describing visual scenes using transformed Dirichlet processes. In Neural information processing systems. Google Scholar

  • Swendsen, R., & Wang, J. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters. Google Scholar

  • Todorovic, S., & Ahuja, N. (2006). Extracting subimages of an unknown category from a set of images. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 927–934). Google Scholar

  • Tu, Z., & Zhu, S.-C. (2002). Image segmentation by data-driven Markov chain Monte Carlo. IEEE Transactions on Pattern Analysis and Machine Learning, 24(5), 657–673. CrossRefGoogle Scholar

  • Ullman, S., Sali, E., & Vidal, M. (2001). A fragment-based approach to object representation and classification. In Proceedings of the 4th international workshop on visual form. Google Scholar

  • Vestri, C., & Devernay, F. (2001). Using robust methods for automatic extraction of buildings. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1). Google Scholar

  • Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 511–518). Google Scholar

  • Wainwright, M., & Jordan, M. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1), 1–305. CrossRefGoogle Scholar

  • Weber, M., Welling, M., & Perona, P. (2000). Towards automatic discovery of object categories. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 101–108). Google Scholar

  • Wei, L., & Prinet, V. (2005). Building detection from high-resolution satellite image using probability model. In Geoscience and remote sensing symposium, IGARSS (pp. 25–29). Google Scholar

  • Wu, T. F., Xia, G. S., & Zhu, S.-C. (2007). Compositional boosting for computing hierarchical image structures. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–8). Google Scholar

  • Yao, B., Yang, X., & Zhu, S.-C. (2007). Introduction to a large scale general purpose groundtruth dataset: methodology, annotation tool, and benchmarks. Energy Minimization Methods in Computer Vision and Pattern Recognition, 4697, 169–183. CrossRefGoogle Scholar

  • Zhao, T., & Nevatia, R. (2001). Car detection in low resolution aerial image. In IEEE international conference on computer vision (Vol. 1). Google Scholar

  • Zhu, S.-C., & Mumford, D. (2006). A stochastic grammar of images. Foundation and Trends in Computer Graphics and Vision, 2(4), 259–362. CrossRefGoogle Scholar

  • Zhu, S.-C., Wu, Y.-N., & Mumford, D. (1998). Frame: Filters, random fields, and minimax entropy towards a unified theory for texture modeling. International Journal of Computer Vision, 2, 107–126. CrossRefGoogle Scholar

  • Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008). Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion. In Proceedings of the 10th European conference on computer vision: Part II. Google Scholar

  • Никто позволивший себе угрожать жизни моего сотрудника не выйдет отсюда.  - Он поднес телефон к уху и рявкнул: - Коммутатор. Соедините меня со службой безопасности. Хейл начал выворачивать шею Сьюзан. - Я-я…я убью .

    0 thoughts on “Generalizing Swendsen-Wang For Image Analysis Essay”

      -->

    Leave a Comment

    Your email address will not be published. Required fields are marked *