Humboldt Penguins Research Papers

Ten Humboldt (Spheniscus humboldti) and eight Magellanic Penguins (S. magellanicus) were successfully equipped with satellite transmitters in March 2009 on Islotes Puñihuil in central south-Chile to follow their post-moult dispersal. Overall, Humboldt Penguins could be followed for a mean period of 49 ±18 days (range: 25–93) and Magellanic Penguins for 57 ±12 days (range 35–68). Irrespective of species and sex, seven study birds remained in the vicinity of their breeding ground throughout the transmission period. All other penguins moved northwards, either only a relatively short distance (max 400 km) to Isla Mocha at 38°S () or further north beyond 35°S (). However, eight of these birds (73%) turned south again towards the end of the individual tracking periods. The total area used by both species during the tracking period was restricted to a coastal area stretching from the breeding site at 42°S about 1000 km to the north at about 32°S. The area used by Humboldt penguins overlapped by 95% the area used by Magellanic penguins, whereas the area used by the latter species was much larger and overlapped only by 45% with the area used by Humboldt penguins. Overall, our results indicate that Magellanic Penguins in the Pacific Ocean are probably less migratory than their conspecifics on the Atlantic side, while Humboldt Penguins appear to be more migratory than previously anticipated. In general, there was a poor relationship between preferred foraging areas and chlorophyll-a, as a proxy for primary productivity, indicating the limitations of using remote-sensed primary productivity as a proxy to interpret the foraging behaviour of marine predators. In addition, there was also no clear relationship between the preferred foraging areas and the amount of regional fish catches by artisanal fishery.

1. De La Puente S., Bussalleu A., Cardena M., Valdes-Velaasquez A., Majluf P. Humboldt Penguins (Spheniscus humboldti) In: Garcia-Borboroglu P.G., Boersma P.D., editors. Penguins: Natural History and Conservation. University of Washington Press; Seattle, WA, USA: 2013. pp. 269–287.

2. Paredes R., Zavalaga C.B., Boness D.J. Patterns of egg laying and breeding success in Humboldt Penguins (Spheniscus humboldti) at Punta San Juan, Peru. Auk. 2002;119:244–250. doi: 10.1642/0004-8038(2002)119[0244:POELAB]2.0.CO;2.[Cross Ref]

3. Zavalaga C.B., Paredes R. Sex determination of adult Humboldt Penguins using morphometric characters. J. Field Ornithol. 1997;68:102–112.

4. Taylor S.S., Leonard M.L., Boness D.J., Majluf P. Foraging by Humboldt Penguins (Spheniscus humboldti) during the chick-rearing period: General patterns, sex differences, and recommendations to reduce incidental catches in fishing nets. Can. J. Zool. 2002;80:700–707. doi: 10.1139/z02-046.[Cross Ref]

5. Rey A.R., Pütz K., Simeone A., Hiriart-Bertrand L., Reyes-Arriagada R., Riquelme V., Luthi B. Comparative foraging behaviour of sympatric Humboldt and Magellanic Penguins reveals species-specific and sex-specific strategies. EMU. 2013;113:145–153. doi: 10.1071/MU12040.[Cross Ref]

6. Otsuka R., Aoki K., Hori H., Wada M. Changes in circulating LH, sex steroid hormones, thyroid hormones and corticosterone in relation to breeding and molting in captive Humboldt Penguins (Spheniscus humboldti) kept in an outdoor open display. Zool. Sci. 1998;15:103–109. doi: 10.2108/zsj.15.103.[PubMed][Cross Ref]

7. Williams T.D., Guglielmo C.G., Egler O., Martyniuk C.J. Plasma lipid metabolites provide information on mass change over several days in captive Western Sandpipers. Auk. 1990;116:994–1000.

8. Anteau M.J., Afton A.D. Lipid reserves of lesser scaup (Aythya affinis) migrating across a large landscape are consistent with the “spring condition” hypothesis. Auk. 2009;126:873–993. doi: 10.1525/auk.2009.08193.[Cross Ref]

9. Cherel Y., Robin J.P., Walch O., Karmann H., Netchitailo P., Le Maho Y. Fasting in king penguin. I. Hormonal and metabolic changes during breeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1988;254:170–177.[PubMed]

10. Cortright R.N., Koves T.R. Sex differences in substrate metabolism and energy homeostasis. Can. J. Appl. Physiol. 2000;25:288–311.[PubMed]

11. Tate C.A., Holtz R.W. Gender and fat metabolism during exercise: A review. Can. J. Appl. Physiol. 1998;23:570–582. doi: 10.1139/h98-032.[PubMed][Cross Ref]

12. Volpi E., Lucidi P., Bolli G.B., Santeusanio F., De Feo P. Gender differences in basal protein kinetics in young adults. J. Clin. Endocr. Metab. 1998;83:4363–4367. doi: 10.1210/jcem.83.12.5330.[PubMed][Cross Ref]

13. Valle A., Roca P. Caloric restriction and gender: Which is the stronger sex? Agro Food Ind. Hi-Tech. 2007;18:13–15.

14. Merimee T.J., Misbin R.I., Pulkkinen A.J. Sex variations in free fatty acids and ketones during fasting: Evidence for a role of glucagon. J. Clin. Endocr. Metab. 1978;46:414–419. doi: 10.1210/jcem-46-3-414.[PubMed][Cross Ref]

15. Lamont L.S. Gender differences in amino acid use during endurance exercise. Nut. Rev. 2005;63:419–422. doi: 10.1111/j.1753-4887.2005.tb00116.x.[PubMed][Cross Ref]

16. Colom B., Alcolea M.P., Valle A., Oliver J., Roca P., Garcia-Palmer F.J. Skeletal muscle of female rats exhibit higher mitochondrial mass and oxidative-phosphorylative capacities compared to males. Cell. Physiol. Biochem. 2007;19:205–212.[PubMed]

17. Floridi A., Blotta I., Marcante M.L. Metabolic evaluation of sexual dimorphism. IV. Metabolic differences related to the oxidative metabolism. Experientia. 1973;29:1228–1229.[PubMed]

18. Bundy J.G., Davey M.P., Viant M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics. 2009;35:3–21. doi: 10.1007/s11306-008-0152-0.[Cross Ref]

19. Wallace R.S., Dubach J., Michaels M.G., Keuler N.S., Diebold E.D., Grzybowski K., Teare J.A., Willis M.J. Morphometric determination of gender in adult Humboldt Penguins (Spheniscus humboldti) Waterbirds. 2008;31:448–453.

20. Dunn W.B., Broadhurst D., Begley P., Zelena E., Francis-McIntyre S., Anderson N., Brown M., Knowles J.D., Halsall A., Haselden J.N., et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Prot. 2011;6:1060–1083.[PubMed]

21. Psychogios N., Hau D.D., Peng J., Guo A.C., Mandal R., Bouatra S., Sinelnikov I., Krishnamurthy R., Eisner R., Gautam B., et al. The human serum metabolome. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0016957.[PMC free article][PubMed][Cross Ref]

22. Jiye A., Trygg J., Gullberg J., Johansson A.I., Jonsson P., Antti H., Marklund S.L., Moritz T. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 2005;77:8086–8094.[PubMed]

23. Ulanov A., Widholm J.M. Effect of the expression of cyanamide hydratase on metabolites in cyanamide treated soybean plants kept in the light or dark. J. Exp. Bot. 2007;58:4319–4332. doi: 10.1093/jxb/erm320.[PubMed][Cross Ref]

24. Sarup P., Pedersen S.M.M., Nielsen N.C., Malmendal A., Loeschcke V. The metabolic profile of long-lived Drosophila melanogaster. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0047461.[PMC free article][PubMed][Cross Ref]

25. Sellitto M., Bai G., Serena G., Fricke W.F., Sturgeon C., Gajer P., White J.R., Koenig S.S.K., Sakamoto J., Boothe D., et al. Proof of concept of microbiome -metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0033387.[PMC free article][PubMed][Cross Ref]

26. Hazard D., Fernandez X., Pinguet J., Chambon C., Letisse F., Portais J.C., Wadih-Moussa Z., Remignon H., Molette C. Functional genomics of the muscle response to restraint and transport in chickens. J. Anim. Sci. 2011;89:2717–2730.[PubMed]

27. Roessner U., Wagner C., Kopka J., Trethewey R.N., Willmitzer L. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000;23:131–142.[PubMed]

28. Desbrosses G., Steinhauser D., Kopka J., Udvardi M. Metabolome Analysis Using GC-MS. In: Márquez A.J., editor. Lotus japonicus Handbook. Springer; Dordrecht, NL, USA: 2005. pp. 165–174.

29. Storey J.D. A direct approach to false discovery rates. J. Royal Stat. Soc. Ser. B: Stat. Method. 2002;64:479–498. doi: 10.1111/1467-9868.00346.[Cross Ref]

30. Bro R., Smilde A.K. Centering and scaling in component analysis. J. Chem. 2003;17:6–33.

31. Van den Berg R.A., Hoefsloot H.C.J., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics. 2006;7 doi: 10.1186/1471-2164-7-142.[PMC free article][PubMed][Cross Ref]

32. Wiklund S., Johansson E., Sjöström M.L., Mellerowicz E.J., Edlund U., Shockcor J.P., Gottfries J., Moritz T., Trygg J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008;80:115–122.[PubMed]

33. Elarabany N.F. Sex-related variation in metabolic profile of two wagtail species. J. Exp. Zool. Part A: Ecol. Gen. Physiol. 2015;323:202–209. doi: 10.1002/jez.1912.[PubMed][Cross Ref]

34. Arizmendi-Mejia R., Militao T., Viscor G., Gonzales-Solis J. Pre-breeding ecophysiology of a long-distance migratory seabird. J. Exp. Mar. Biol. Ecol. 2013;443:162–168. doi: 10.1016/j.jembe.2013.02.047.[Cross Ref]

35. Villegas A., Masero J.A., Corbacho C., Gutierrez J.S., Albano N., Sanchez-Guzman J.M. Sex-specific vulnerability to breeding conditions in chicks of the sexually monomorphic Gull-billed Tern. J. Ornithol. 2013;154:431–439. doi: 10.1007/s10336-012-0907-2.[Cross Ref]

36. Ghebremeskel K., Williams T.D., Williams G., Gardner D.A., Crawford M.A. Plasma metabolites in Macaroni Penguins (Eudyptes chrysolophus) arriving on land for breeding and moulting. Comp. Biochem. Physiol. A. 1991;99:245–250. doi: 10.1016/0300-9629(91)90267-G.[Cross Ref]

37. Ghebremeskel K., Williams T.D., Williams G., Gardner D.A., Crawford M.A. Dynamics of plasma nutrients and metabolites in molting macaroni (Eudyptes chrysolophus) and gentoo (Pygoscelis papua) penguins. Comp. Biochem. Physiol. A. 1992;101:301–307. doi: 10.1016/0300-9629(92)90536-Y.[Cross Ref]

38. Ji B., Ernest B., Gooding J.R., Das S., Saxton A.M., Simon J., Dupont J., Metayer-Coustard S., Campagna S.R., Voy B.H. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting. BMC Genomics. 2012;13 doi: 10.1186/1471-2164-13-441.[PMC free article][PubMed][Cross Ref]

39. Silva J.E. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 2006;86:435–464. doi: 10.1152/physrev.00009.2005.[PubMed][Cross Ref]

40. Work T.M. Weights, hematology, and serum chemistry of seven species of free-ranging tropical Pelagic seabirds. J. Wildl. Dis. 1996;32:643–657. doi: 10.7589/0090-3558-32.4.643.[PubMed][Cross Ref]

41. Bourgeon S., Leat E.H.K., Magnusdóttir E., Fisk A.T., Furness R.W., Strom H., Hansson S.A., Petersen A., Olafsdottir K., Borga K., et al. Individual variation in biomarkers of health: Influence of persistent organic pollutants in Great skuas (Stercorarius skua) breeding at different geographical locations. Environ. Res. 2012;118:31–39.[PubMed]

42. Cherel Y., Leloup J., Maho Y.L. Fasting in king penguin. II. Hormonal and metabolic changes during molt. Am. J. Physiol. 1988;254:R178–R184.[PubMed]

43. Clarke J., Manly B., Kerry K., Gardner H., Franchi E., Corsolini S., Focardi S. Sex differences in Adélie penguin foraging strategies. Polar Biol. 1998;20:248–258. doi: 10.1007/s003000050301.[Cross Ref]

44. Chappell M.A., Shoemaker V.H., Janes D.N., Maloney S.K., Bucher T.L. Energetics of foraging in breeding Adélie Penguins. Ecology. 1993;74:2450–2461. doi: 10.2307/1939596.[Cross Ref]

45. Groscola R. Changes in body mass, body temperature, and plasma fuel levels during the natural breeding fast in male and female Emperor Penguins Aptenodytes forsteri. J. Comp. Physiol. B. 1986;156:521–527. doi: 10.1007/BF00691038.[Cross Ref]

46. Hays C. Effects of the 1982–1983 El Niño on Humboldt Penguin colonies in Peru. Biol. Conserv. 1986;36:169–180. doi: 10.1016/0006-3207(86)90005-4.[Cross Ref]

47. Gonzalez-Solis J., Becker P.H., Wendeln H., Wink M. Hatchling sex ratio and sex specific mortality in common Terns Sterna hirundo. J. Ornithol. 2005;146:235–243. doi: 10.1007/s10336-005-0084-7.[Cross Ref]

0 thoughts on “Humboldt Penguins Research Papers”


Leave a Comment

Your email address will not be published. Required fields are marked *